Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.11.19.469183

ABSTRACT

The current COVID-19 pandemic highlights the need for broad-spectrum antiviral therapeutics. Here we describe a new class of self-assembling immunostimulatory short duplex RNAs that potently induce production of type I and type III interferon (IFN-I and IFN-III), in a wide range of human cell types. These RNAs require a minimum of 20 base pairs, lack any sequence or structural characteristics of known immunostimulatory RNAs, and instead require a unique conserved sequence motif (sense strand: 5'-C, antisense strand: 3'-GGG) that mediates end-to-end dimer self-assembly of these RNAs by Hoogsteen G-G base-pairing. The presence of terminal hydroxyl or monophosphate groups, blunt or overhanging ends, or terminal RNA or DNA bases did not affect their ability to induce IFN. Unlike previously described immunostimulatory siRNAs, their activity is independent of TLR7/8, but requires the RIG-I/IRF3 pathway that induces a more restricted antiviral response with a lower proinflammatory signature compared with poly(I:C). Immune stimulation mediated by these duplex RNAs results in broad spectrum inhibition of infections by many respiratory viruses with pandemic potential, including SARS-CoV-2, SARS-CoV, MERS-CoV, and influenza A, as well as the common cold virus HCoV-NL63 in both cell lines and human Lung Chips that mimic organ-level lung pathophysiology. These short dsRNAs can be manufactured easily, and thus potentially could be harnessed to produce broad-spectrum antiviral therapeutics at low cost.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
2.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.06.03.446968

ABSTRACT

Many patients infected with coronaviruses, such as SARS-CoV-2 and NL63 that use ACE2 receptors to infect cells, exhibit gastrointestinal symptoms and viral proteins are found in the human gastrointestinal tract, yet little is known about the inflammatory and pathological effects of coronavirus infection on the human intestine. Here, we used a human intestine-on-a-chip (Intestine Chip) microfluidic culture device lined by patient organoid-derived intestinal epithelium interfaced with human vascular endothelium to study host cellular and inflammatory responses to infection with NL63 coronavirus. These organoid-derived intestinal epithelial cells dramatically increased their ACE2 protein levels when cultured under flow in the presence of peristalsis-like mechanical deformations in the Intestine Chips compared to when cultured statically as organoids or in Transwell inserts. Infection of the intestinal epithelium with NL63 on-chip led to inflammation of the endothelium as demonstrated by loss of barrier function, increased cytokine production, and recruitment of circulating peripheral blood mononuclear cells (PMBCs). Treatment of NL63 infected chips with the approved protease inhibitor drug, nafamostat, inhibited viral entry and resulted in a reduction in both viral load and cytokine secretion, whereas remdesivir, one of the few drugs approved for COVID19 patients, was not found to be effective and it also was toxic to the endothelium. This model of intestinal infection was also used to test the effects of other drugs that have been proposed for potential repurposing against SARS-CoV-2. Taken together, these data suggest that the human Intestine Chip might be useful as a human preclinical model for studying coronavirus related pathology as well as for testing of potential anti-viral or anti-inflammatory therapeutics.


Subject(s)
Coronavirus Infections , Signs and Symptoms, Digestive , COVID-19 , Intestinal Diseases , Inflammation
3.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.04.26.441498

ABSTRACT

Mechanical forces associated with breathing play a fundamental role in lung development and disease but the molecular pathways remain largely unknown. Here, we used a mechanically actuatable Human Lung Alveolus Chip that recapitulates human lung alveolar type I and type II cell differentiation, alveolar-capillary interface formation, and genome-wide gene expression profiles characteristic of the distal lung to investigate the role of physical forces associated with cyclic breathing motions in lung innate immune responses to viral infection. When the mechanically active Alveolus Chips are infected with the influenza H3N2 virus, a cascade of host responses is elicited on-chip, including increased production of cytokines and expression of inflammation-associated genes in pulmonary epithelial and endothelial cells, resulting in enhanced recruitment of circulating immune cells as occurs during viral infection in vivo. Surprisingly, studies carried out in parallel with static chips revealed that physiological breathing motions suppress viral replication by activating protective innate immune responses in epithelial and endothelial cells. This is mediated at least in part through upregulation of S100 calcium-binding protein A7 (S100A7), which binds to the Receptor for Advanced Glycation End Products (RAGE), an inflammatory mediator that is most highly expressed in the lung alveolus in vivo. This mechano-immunological control mechanism is further supported by the finding that existing RAGE inhibitor drugs can suppress the production of inflammatory cytokines in response to influenza virus infection in this model. S100A7-RAGE interactions and modulation of mechanical ventilation parameters could therefore serve as new targets for therapeutic intervention in patients infected with influenza and other potential pandemic viruses that cause life-threatening lung inflammation.

4.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.04.13.039917

ABSTRACT

Rapidly spreading viral pandemics, such as those caused by influenza and SAR-CoV-2 (COVID19), require rapid action and the fastest way to combat this challenge is by repurposing existing drugs as anti-viral therapeutics. Here we first show that human organ-on-a-chip (Organ Chip) microfluidic culture devices lined by a highly differentiated, primary, human lung airway epithelium cultured under an air-liquid interface and fed by continuous medium flow can be used to model virus entry, replication, strain-dependent virulence, host cytokine production, and recruitment of circulating immune cells in response to infection by influenza, as well as effects of existing and novel therapeutics. These Airway Chips, which contain human lung epithelial cells that express high levels of ACE2 and TMPRSS2, were then used to assess the inhibitory activities of 7 clinically approved drugs (chloroquine, arbidol, toremifene, clomiphene, amodiaquine, verapamil, and amiodarone) that we found inhibit infection by viral pseudoparticles expressing SARS-CoV-2 spike protein in human Huh-7 cells, and others recently showed suppress infection by native SARS-CoV-2 in Vero cells. However, when these drugs were administered under flow at the maximal concentration in blood reported in clinical studies in human Airway Chips, only two of these drugs -- amodiaquine and toremifene -- significantly inhibited entry of the pseudotyped SARS-CoV-2 virus. This work suggests that human Organ Chip technology may be used in conjunction with existing rapid cell-based screening assays to study human disease pathogenesis and expedite drug repurposing in biothreat crises caused by pandemic viruses.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL